

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T510(E)(N24)T

NATIONAL CERTIFICATE

ELECTRICAL TRADE THEORY N2

(11041872)

24 November 2017 (X-Paper) 09:00–12:00

This question paper consists of 6 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ELECTRICAL TRADE THEORY N2 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Where applicable, answers must be in accordance with the SABS (SANS) Code of Practice SANS 10142–1:2003 for the Wiring of Premises.
- 5. Leave at least THREE lines open after each question.
- 6. Sketches must be neat, labelled and large enough to show the required detail.
- 7. Formulae used in Electrical Trade Theory N2 can be found at the end of the question paper.
- 8. Answers must be given to THREE decimal places.
- 9. Write neatly and legibly.

-3-

QUESTION 1: CONDUCTORS AND CABLES

1.1	The declared line to neutral voltage at the supply point of an installation is 230 V.		
	Determine be expect	e the minimum allowable voltage between live and neutral that can ted at any outlet in the installation.	(4)
1.2	State TW	O advantages of installing cables underground (buried).	(2)
1.3	Define the	e term <i>power factor</i> .	(2)
1.4	State ON	E factor to be taken into account when selecting a cable.	(1)
1.5	State wh permissib	hat the Code of Practice stipulates with regard to maximum le volt drop in an installation.	(1)
1.6	When wiring a domestic installation, certain conductor sizes must be considered. State the cross-sectional area of the live and neutral conductors you would use for a plug circuit.		(1)
QUEST	ION 2: SW	ITCH GEAR, CONTACTORS AND RELAYS	[11]
2.1	Indicate v answer (2.1.1–2.4	whether the following statements are TRUE or FALSE. Choose the and write only 'true' or 'false' next to the question number 1.6) in the ANWER BOOK.	
	2.1.1	In many smaller applications joints are made in conduit boxes, cable-joining boxes, appliances and light fittings.	
	2.1.2	When large-diameter copper conductors are joined, insulated strip connectors are almost always used.	
	040		
	2.1.3	When making a Scotch-cast joint, insulation tape is used to cover the complete joint.	
	2.1.3	When making a Scotch-cast joint, insulation tape is used to cover the complete joint. A ferrule is used to terminate conductors.	

2.1.6 A binding wire is used when a Brittannia joint is made.

(6 × 1) (6)

(2)

- State TWO disadvantages of high-voltage distribution. (2) 2.2
- 2.3 Name the main function of isolating material (Isolators) (2)
- 2.4 State the main difference between a relay and a disconnector [12]

QUESTION 3: DC MOTORS AND STARTERS

3.1	Draw a neat, labelled circuit diagram of a short-shunt compound motor. Clearly show the TWO windings.	
3.2	Draw the load characteristic of a series motor.	
3.3	Explain the function of a commutator.	(2)
3.4	Explain the need for a motor starter.	
QUES	TION 4: AC MOTORS AND STARTERS	
4.1	Draw a neat, labelled circuit diagram of a capacitor star-/induction-run single- phase motor.	(4)
4.2	Explain the term squirrel-cage rotor construction.	
4.3	The overcurrent-protection devices used for motors must meet certain requirements.	
	Discuss these requirements under the following headings:	
	4.3.1 The tripping value	(2)
	4.3.2 The time delay	(3)
4 4	Chudy Figure 4.4. Identify the type of mater that is used in a 200 M/ 200 M/ AO	

4.4 Study Figure 4.1. Identify the type of motor that is used in a 300 W, 220 V AC hand drill.

(1)

T510**(E)**(N24)T

4.5	The compound motor is widely used for small AC applications.			
	Name TWO applications using compound motors.	(2) [15]		
QUESTI	ON 5: EARTHING			
5.1	Explain why earthing is important.			
5.2	Briefly explain what is meant by equipment earthing.			
5.3	Define the term system earthing.	(3)		
5.4	Explain the term <i>floating earth</i> as it applies to a portable appliance like an electrical lawn mower.	(3) [12]		
QUEST	ION 6: PROTECTION			
6.1	State THREE advantages of an HRC fuse over a rewireable fuse.	(3)		
6.2	Describe, with the aid of a drawing, the operation of a thermal overload protection.	(4)		
6.3	State how many ratings a fuse has and explain the meaning of the rating.	(3)		
		[10]		
QUESTI	ION 7: MEASURING INSTRUMENTS			
7.1	Measuring instruments are important for circuit diagnostics and recording.			
	Give the name of the instrument you would use to determine each of the following:			

- 7.1.1 If the current rating of a supply cable is being exceeded
- 7.1.2 The amount of electric power consumed

 (2×1) (2)

7.2 Draw a neat, fully labelled circuit diagram to show the connection of a watt hour meter in a single-phase system.
(4)
[6]

T510**(E)**(N24)T

A three-phase delta-star transformer is connected to a 2,2 kV supply. 8.1 The secondary-phase voltage is measured and found to be 220 V.

Determine the following:

. (
or (3)
(3)
of
(3) [12]
ар (6)
(3)
(1) [10]
.L: 100

ELECTRICAL TRADE THEORY N2

FORMULA SHEET

Any applicable formula may also be used.

STAR	$V_L = \sqrt{3} V_{PH}$
	$I_L = I_{PH}$
DELTA	$V_L = V_{PH}$
	$I_L = \sqrt{3} \ I_{PH}$
TRANSFORMER	$\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = \frac{E_1}{E_2}$
SINGLE-PHASE	
APPARENT POWER	S = VI
TRUE POWER	$P = VICOS\phi$
REACTIVE POWER	$Q = VISIN\phi$
THREE-PHASE	
APPARENT POWER	$S = \sqrt{3} V_L I_L$
TRUE POWER	$P = \sqrt{3} V_L I_L COS\phi$
REACTIVE POWER	$Q = \sqrt{3} V_L I_L \text{ SIN} \phi$
FAULT CURRENT	$Ifc = \frac{CIF \times A}{\sqrt{t}}$